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ABSTRACT
In this paper, we propose a novel semi-supervised approach for
detecting profanity-related offensive content in Twitter. Our ap-
proach exploits linguistic regularities in profane language via statis-
tical topic modeling on a huge Twitter corpus, and detects offensive
tweets using these automatically generated features. Our approach
performs competitively with a variety of machine learning (ML)
algorithms. For instance, our approach achieves a true positive rate
(TP) of 75.1% over 4029 testing tweets using Logistic Regression,
significantly outperforming the popular keyword matching base-
line, which has a TP of 69.7%, while keeping the false positive
rate (FP) at the same level as the baseline at about 3.77%. Our ap-
proach provides an alternative to large scale hand annotation efforts
required by fully supervised learning approaches.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing—Text
analysis; I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Languages, Human Factors

Keywords
Twitter, Hadoop, topic modeling, machine learning

1. INTRODUCTION
Social media sites represent some of the most popular sites on

the Internet today. Offensive conent included in the user-generated
content on many of these sites makes users’ online experience un-
pleasant and may also be something that certain users want to filter
(e.g. parents). Thus, an effective approach to detecting inappropri-
ate online content is of great practical importance. In this paper, we
opted to focus on profane language first, given that this is the most
common category of inappropriate language in social media.
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In our work we treat vulgarity as a type of linguistic style [11]
that is expressed within a sentence with a certain rhythm or peri-
odicity, which explains the tendency for a piece of vulgar text to
contain more than one vulgar word. Another key component of our
approach is leveraging a large text corpus with a high enough den-
sity of interesting patterns. The availability of a large enough cor-
pus is more critical than the specifics of the algorithmic approach,
especially in connection with data sets at the scale that is available
over the web on social media sites [12]. In this work, we focus
on Twitter, a popular microblogging service that provides a handy
public platform for users to follow each other and share messages
called tweets, which are text-based posts of up to 140 characters.

Our earlier results indicated that bag-of-words, part-of-speech
(POS) and other pattern-based methods including belief propaga-
tion did not work well for profane tweet detection due to the signif-
icant noise in tweets. In this paper, we propose a hierarchical ap-
proach that exploits the co-occurrence of vulgar language via statis-
tical topic modeling techniques and detects profane language with
automatically generated features using a machine learning frame-
work. In particular, we explore the predictive value of highly ex-
pressive topical features as well as reliable lexical features, and
combine them in a single compact feature space.

In building the composite topical features, we first use a boot-
strapping strategy to automatically collect a set of tweets from a
number of offense-pro twitterers (i.e., twitterers who have a high
prevalence of seed profane words) and law-abiding twitterers (i.e.,
twitterers who rarely use seed offensive words) over a large tweet
corpus using a list of pre-defined offensive seed words; we then
learn topic models from this tweet set via Latent Dirichlet Alloca-
tion (LDA) [3], a well-known generative topic modeling algorithm.

The major contribution of our proposed method is two-fold.

1. To the best of our knowledge, our work in this paper is the
first computational approach to model profanity as a linguis-
tic style in Twitter using a bootstrapping approach.

2. Our approach presented in this paper is the first to demon-
strate that features induced using statistical topic modeling
techniques for feature induction are more discriminative in a
vulgarity detection task than a state-of-the-art keyword match-
ing approach.

2. RELATED WORK

2.1 Prior Research on Offensive Language De-
tection

Offensive content detection is not a brand new area. Neverthe-
less, available techniques described in the literature are few and



mainly utilize a pre-defined dictionary of hostile words or patterns.
In general, these approaches are rigid and crucially depend upon
the coverage of the seed word or pattern list.

In the seminal work called Smokey [16], Spertus hand designed
47 features based on the syntax and semantics of the training sen-
tences, catching 64% of the abusive messages in a testing set of
460 messages with an FP of 2%. Many of the features in Smokey
suffer either from low coverage or a high false positive rate. Other
work utilizing seed words or rules include [18, 10, 15].

2.2 Pattern-based Work on Social Media Anal-
ysis

In recent years, a variety of manual and automatic feature engi-
neering techniques have been developed to construct feature spaces
that are adept at capturing interesting language variation. Among
them, two pattern-based approaches [6, 17] are similar to our own.
However, given the extremely noisy and flexible nature of the Twit-
ter messages, machine learning algorithms could be easily over-
whelmed by a large set of trivial patterns.

2.3 Sentiment Analysis on Twitter
Twitter has drawn significant attention in recent years, and much

work related to sentiment analysis has been published, such as [5, 4,
9]. Compared with offensiveness detection, the definition of a pos-
itive or negative attitude in sentiment analysis is relatively straight-
forward. For our task, the notion of vulgarity is rather subjective
and the degree of offensiveness varies considerably among people,
rendering the labeling process in our task even harder.

2.4 Bootstrapping Algorithms in NLP
Bootstrapping is a widely-used technique that provides labels

given a large amount of unlabeled data and a small amount of seed
information. Research that has applied bootstrapping to NLP prob-
lems has existed for more than a decade [8]. In this paper, we lever-
age bootstrapping to aid in vulgar tweet detection, and to the best of
our knowledge, our work is the first in doing so. Furthermore, our
target of offensive language is more subtle than many other tasks in
the bootstrapping literature such as place name extraction [8].

3. ALGORITHMIC DETAILS

3.1 Twitter Corpus
The architecture of our system is given in Figure 1. Our tweet

corpus contains the textual messages along with other meta data
such as twitterer ID, posting time, etc. The raw tweets in our ex-
periment were collected by querying the Twitter API as well as
archiving the “Gardenhose” real-time stream [13]. Our raw corpus
for training and testing purposes has more than 680 million and 16
million tweets respectively.

Tweets are expressed in an extremely colloquial fashion, with
substantial noise and linguistic variation. For example, tweets con-
tain a high volume of novel words, interjections, repetitions, ortho-
graphical errors such as word shortening (acronyms, words with
characters removed, words shortened by phonetic spellings like nite
for night), etc. Moveover, dropping spaces between words is also
common, such as howareyou, which increases the scale of the tweet
vocabulary significantly and imposes a huge burden for text analy-
sis tasks.

3.2 Tweet Preprocessing
We designed a word cleaning algorithm, applying a series of fil-

ters in the following order to process the raw tweet corpus prior to
topic induction and feature extraction.

1. We removed non-English tweets using LingPipe [1] with Hadoop.

2. To reduce the bias from heavy twitterers and increase diver-
sity in learned patterns, we dropped tweets in the training set
from twitterers with more than 1000 followers or followees.

3. We intentionally dropped retweets (indicated by “rt”) from
our training set, which refers to tweets from somebody else
that one comes across and simply shares with others, because
they unnecessarily magnify the weights of a certain words.

4. We removed the shortened URLs in tweets.

5. Twitterers often use mentions in the body of their tweets to
refer to other people, which has the format of @username,
and we removed these from the tweets.

6. The # symbol, called a hashtag, is used in Twitter to mark
topics in a tweet, and we removed all hashtags from the tweets
because a great volume of them are concatenated words, which
tends to amplify the vocabulary size inadvertently and may
hurt topic modeling.

7. To tackle the problem of intentional repetitions, we designed
a heuristic to condense 3 or more than 3 repetitive letters into
a single letter, e.g., hhhheeeello to hello. A similar heuristic
has been used in other work such as [7].

8. For sequences of 2 repetitive letters, we counted how many
such sequences each word in a tweet has, and condensed each
such sequence into a single letter if the number of such se-
quences is over a threshold1. For example, yyeeaahh will be
reduced to yeah, while committee remains intact.

9. We removed all stopwords.

10. We defined a word to be a sequence of letters, - or ’, and
removed all tokens not satisfying this requirement.

3.3 Feature Engineering

3.3.1 Topical Feature Construction
The idea is to treat each tweet as a finite mixture over an un-

derlying set of topics, each of which is in turn characterized by
a distribution over words, and then examine tweets via such topic
distributions. Intuitively, offensive topics may be associated with
higher probabilities for offensive words.

To learn a model that can infer topic distributions from tweets,
we need a set of labeled training tweets with both offensive and
non-offensive content, and to that end, we designed a bootstrapping
algorithm to extract training tweets from a large tweet corpus using
the map-reduce framework in Hadoop. The details are shown in
algorithm 1, 2, and 3.

Our bootstrapping technique does not assume every word from
the constant offenders to be offensive. Neither does it require a
curse-free tweet set from benign twitterers. We expect topic mod-
eling to pick up lexical collocation patterns in the profane content
and produce meaningful topics for our task.

One merit of bootstrapping between twitterers and tweets is that
with a limited list of seed words, we are able to capture a lot more
novel offensive patterns automatically, thus tremendously reducing
the effort in manual annotation.

With a set of training tweets as obtained in Algorithm 1, we adopt
Latent Dirichlet Allocation (LDA) [3], a renowned generative prob-
abilistic model for topic discovery, to build the composite topical
features. We chose the LDA implementation by Phan et al.[14].
1We used a threshold of 3 in this work.



Figure 1: System architecture. A1) Bootstrap between twitterers and tweets based on a seed word set to obtain training tweets for
topic model learning; A2) topic models are learned via a generative LDA approach; B1) tweets in a holdout testing set are processed
in the same fashion as in A1); B2) topic distributions are inferred for each testing tweet by the topic model learned in step A2; B3)
seed words are applied against each testing tweet, leading to a binary lexicon feature; B4) ML models are built and evaluated.

Algorithm 1 BuildTrainingTweetsViaBootstrapping
Require: raw tweets T , threshold t, seed words S
Ensure: tweet set TS for topic learning
1: ot, gt← ClassifyTwitterers(T , t, S)
2: TS ← ExtractTweets(T , ot, gt)
3: return TS

Algorithm 2 ClassifyTwitterers
Require: raw tweets T , threshold t, seed words S
Ensure: offensive twitterers ot, good twitterers gt
1: preprocess T with the English detector and word cleaner by

Hadoop
2: compute the percent p of offensive tweets for each twitterer

based on S by Hadoop
3: ot← twitterers with p >= t
4: gt← twitterers with p = 0
5: return ot, gt

Algorithm 3 ExtractTweets
Require: raw tweets T , offensive twitterers ot, good twitterers gt
Ensure: tweet set TS for topic learning
1: preprocess T with the English detector and word cleaner by

Hadoop
2: OT ← get all tweets from each twitterer in ot by Hadoop
3: GT ← randomly sample |OT | tweets from gt by hadoop
4: TS ← OT + GT
5: return TS

3.3.2 The Lexicon Feature
The keyword matching technique, though narrow in coverage,

can catch common vulgar language (with false positives sometimes
depending on the context) and we exploit this property to introduce
a lexicon feature into our framework, which is a binary indicator
that there is at least one word from our offensive lexicon in the
tweet. With the two types of features, our approach builds machine
learning models to classify tweets, as shown in Algorithm 4.

Algorithm 4 ClassifyTweets
Require: tweet set TS for topic learning, testing tweet set TT ,

labels L for TT , seed words S
Ensure: classification result set r
1: m← learn topic models with LDA on TS
2: F ← φ
3: for each tweet t in TT do
4: ft ← infer the topic distributions with m
5: fb ← check whether t has an offensive word in S
6: f ← build a feature vector concatenating ft, fb

7: F ← F ∪ f
8: end for
9: r ← do 10-fold cross validation on F with respect to L

10: return r

4. EXPERIMENT

4.1 Experimental Settings
We compiled a dictionary of 338 most common offensive words

based on [2], and manually removed entries used often yet not very
offensive such as “hell”. Moreover, we used the tweets crawled



from May 25, 2009 to October 17, 2010 as the raw training corpus
for topic model learning, and took tweets from October 18, 2010 to
October 27, 2010 as the raw testing corpus from which we selected
testing tweets for the final evaluation. Table 1 gives some basic
statistics about these two raw corpus.

For evaluation, we randomly sampled a subset of 4029 tweets
from the raw testing corpus. To guarantee enough offensive pat-
terns in this testing set, we first computed the percentage of offen-
sive tweets p from each twitterer in the raw testing corpus based on
our seed lexicon, and then randomly chose tweets from twitterers
with p >= 40%. We then recruited three participants on campus
with different backgrounds to label the tweets in this testing set.

Table 1: Statistics of our raw training and testing corpus.
4.58% tweets in the raw training tweet corpus contain at least
one offensive word in our seed list.

Training corpus Testing corpus
#Tweets 680, 803, 805 16, 385, 084
#Retweets 67, 047, 221 2, 237, 468
#URLs 118, 941, 407 2, 728, 363
#@usernames 260, 599, 517 6, 198, 205
#Hashtags 81, 561, 580 2, 354, 449
#Stopwords 4, 645, 096, 146 108, 785, 278
#Other words 4, 244, 592, 171 101, 020, 079

4.2 Experimental Results
To fully evaluate our approach, we adopted 4 popular machine

learning algorithms, including J48 decision tree learning, Support
Vector Machines (SVM), logistic regression (LR) and random for-
est (RF). We found that these 4 algorithms performed competi-
tively, and due to the limitation of space, we only report the result of
LR, which slightly outperformed the others. Moreover, though the
volume of the raw training corpus is huge (Table 1), the tweet set
produced by our bootstrapping technique (Algorithm 1), which was
actually used to learn the topic model, has only 860, 071 tweets, a
tiny number compared with the raw training corpus. Therefore, we
chose to learn a small number of topics (from 10 to 50) via LDA.

Table 2 shows the F1 values of LR under 10-fold CV using a
threshold of 0.5 on the predicted probabilities. The F1 values im-
proved as the number of learned topics increased, which is reason-
able because we can catch more fine-grained patterns and thus bet-
ter separate offensive and non-offensive content with more topics.
Our approach using the full feature set outperformed the keyword
matching baseline under all configurations with all machine learn-
ing algorithms, suggesting the robustness of our approach across
various learning schemes.

In addition, TP and FP are two important metrics in evaluating
binary classification tasks. We chose a threshold on the predicted
probabilities in LR such that the resultant FP of our approach is on
the same level as the keyword matching baseline, and plot the TP
of our approach using LR in Figure 2. The graph shows that under
such configurations, our approach using the full feature space im-
proves the TP over the baseline by up to 5.4%. The ROC curves in
Figure 2 also indicate that our approach with the full feature space
has superior performance, dominating the algorithm with topic fea-
tures only. Even the keyword matching baseline works reasonably
well, and existing techniques rely to a great extent on it in detecting
vulgarity. The experiment results here suggest that our approach
is able to detect up to 5.4% more profane patterns without sacri-
ficing the FP, which is a statistically significant improvement and
is of great practical importance. Moreover, we can always tune

the threshold on the predicted probabilities and other parameters to
achieve a desirable detection rate, depending on the specific needs
to go more aggressively or conservatively against offensive lan-
guage.

4.3 Error Analysis
To further understand our technique, we conducted an error anal-

ysis after the experiment using 10 topics.
The keyword matching baseline utilizes a lexicon of offensive

words compiled by us, however, 101 testing tweets with at least one
word appearing in our seed lexicon were assigned a label of “not-
offensive” by the human labelers we recruited. This led to all the
3.77% false positives by the baseline algorithm, which indirectly
propagated to the lexicon feature of our proposed approach. This
again confirms that the degree of offensiveness is rather subjective,
and the task of offensiveness detection is difficult.

Moreover, we found that two features, i.e., the lexicon feature
and topic 6, are responsible for many false positives. This comes
as no surprise in that topic 6 contains the most offensive terms,
either known ones in the seed lexicon or novel ones. On the other
hand, no topics had a significant impact on the false negatives, and
we conjecture that false negatives were caused by an additive effect
of the topical features except for topic 4, 6, 9.

5. DISCUSSION
Our approach can be further improved as follows. First, we uti-

lized the topical features only via the word level distributions to de-
tect frequently co-occurring patterns, while in the future we could
consider the benefits of more complex features within the topic rep-
resentation. This is consistent with our finding that a great many
unigrams in topic 4 learned by LDA over the training tweets are
not offensive by themselves, but are clearly indicative of sex-related
offense when combined with other words, such as “wet”, “dirty”,
etc. Second, we currently simply used a binary lexicon feature to
capture the appearance of profane words for each tweet, and alter-
natively, we could adopt a complex weighting mechanism like TF-
IDF. Third, the current tweet set for training the topic model has
860, 071 tweets only. With more data, we can learn more topics
via model tuning.

6. CONCLUSIONS
In this paper, we propose an approach that exploits the lexical

collocation of profane language via statistical topic modeling tech-
niques and detects offensive tweets using highly expressive topical
features as well as the reliable lexicon feature in a single machine
learning framework. The keyword matching technique has been
shown to perform very well in the literature and achieved a TP
of 69.7% with an FP of 3.77% in our experiment. While keep-
ing the FP on the same level as the baseline, our approach had a
TP of 75.1% over 4029 testing tweets using Logistic Regression,
a significant 5.4% improvement over the baseline. In addition, our
approach also provides an alternative to large scale hand annotation
efforts required by supervised learning approaches.
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