
Towards a Unified Interaction Framework for Ubicomp User
Interfaces

Jason I. Hong, Scott Lederer, Mark W. Newman
 Group for User Interface Research

University of California, Berkeley
Berkeley, CA 94720

{jasonh, lederer, newman}@eecs.berkeley.edu
ABSTRACT
The remarkable success of the personal computing era is largely attributable to the WIMP desktop
interaction framework. We identify a set of core design techniques embodied by the WIMP desktop,
specifically aggregators, objects, commands, and selectors, and discuss their applicability to the design
space of ubiquitous computing user interfaces. We offer some potential research directions for exploring
this approach and present a set of open research questions.

INTRODUCTION
The invention of the GUI enabled more people to use computers in more situations and tasks than was
possible with command-line interfaces. However, the modern GUI did not appear fully-formed like Athena
from the head of Zeus. Watching videos of pioneering graphical systems such as Sutherland’s Sketchpad
[7] and Engelbart’s NLS [3] is insightful not only for seeing what these systems enabled, but also what they
lacked. For example, these systems did not have widgets such as buttons and scrollbars, overlapping
windows, icons, menus, as we know them today. A person using these systems today would likely feel that
the interaction was stilted in the same way modern speakers of English feel when they read old English.

Here we differentiate between GUIs, WIMP, and the desktop metaphor. By GUI, we mean all graphical
user interfaces broadly construed. WIMP is the familiar subset of GUIs comprised of Windows, Icons,
Menus, and Pointers. The desktop metaphor is the conceptual model that ties the elements of WIMP
together. It should be noted that the WIMP desktop was not created arbitrarily, but resulted from the careful
application of refined usability design principles to the GUI design space [5]. By offering a consistent
interaction framework, the WIMP desktop empowered users to intuitively transfer basic interaction skills
across a range of applications and devices.

For ubiquitous computing to surpass the success of the personal computing era, we believe that Ubicomp
User Interfaces (UUIs) will require an analogous unified interaction framework (see Figure 1). Although
we as a community do not currently know what the full design space of UUIs will be, we are beginning to
discern its dimensions as UUI components emerge. There is a tendency in research to invent novel
principles and guidelines to shape the future of ubicomp interaction. While ubicomp certainly presents
many new constraints and opportunities, it would be shortsighted to abandon the principles behind the
WIMP desktop, a successful design solution. The questions to ask then are, what interaction problems did
the WIMP desktop successfully address; how did it address them; which of these problems apply to the
design space of UUIs; and can we apply similar solutions for UUIs?

The rest of this position paper is divided along these questions. First, we look at some of the problems that
the WIMP desktop solved and the design principles used in addressing these problems. Second, we
examine the pertinence of these problems to the design space of UUIs. Lastly, we present research
directions for exploring the applicability of WIMP’s design solutions to these problems in the UUI design
space.

Figure 1 – The WIMP Desktop is the

familiar subset of GUIs. Can we

design an analogous interaction

framework for Ubiquitous User

Interfaces (UUIs)?

DECONSTRUCTING THE WIMP DESKTOP
Decomposing the WIMP desktop into its four constituent parts1, we see that:

- Windows are a unit of aggregation for commands and data, providing encapsulation for and
multiplexing of tasks;

- Icons represent objects (nouns) that can be operated on (ex. files) or executed (ex. programs).
Icons can provide feedback on their current state and communicate some notion of what you can
do with them (ex. trashcans);

- Menus provide a standard way of executing commands (verbs). Menus, along with other
approaches such as buttons and toolbars, make the set of valid commands visible to end-users;

- Pointers provide a selection mechanism, allowing end-users to choose a set of objects and execute
a series of commands on them.

Evaluating these aggregators, objects, commands, and selectors (AOCS) according to Norman and Draper’s
design principles of visibility, conceptual models, good mappings, and feedback [6], we see that:

- Windows provide a way of visualizing and managing active tasks;
- Icons (and widgets in general) provide visibility for what targets are available, what targets are

selected, feedback on the current system state (sometimes as direct manipulation feedback), and a
focus for keyboard and mouse input;

- Menus (and widgets in general) provide a visible state of what commands are possible, visual
affordances for how to execute those commands; and a reliable way of executing commands (ex.
cannot misspell a menu command);

- Pointers provide some visible feedback about what operations are possible (ex. resize window or
the I-bar cursor for inserting text);

- The consistent application of these mechanisms across systems has engendered a sufficiently
accurate conceptual model in the user population.

AN APPROXIMATE DESIGN SPACE OF UBICOMP USER INTERFACES
One important unanswered question is, what is the full design space of UUIs from which a smaller subset
can be drawn? Although there are no definitive answers yet, current research and commercial trends
suggest that UUIs are likely to include:

- A richer range of input types, including more natural modes of communication such as speech and
sketching [1], and implicit input through sensors [2];

- A wider range of output types, including multiple small displays both portable and embedded,
aural feedback, haptic feedback, and ambient feedback through channels such as sound and
peripheral vision;

- Multimodal input and output across multiple portable and embedded devices;
- Interaction scaled over space, time, devices, and users, where ongoing tasks will be in various

states of activity across time and space, and will involve multiple devices and users [1];
- Physical spaces and objects entwined with virtual ones.

Given this design space, how might we apply AOCS to satisfy the established design principles of
visibility, feedback, good mappings, and robust conceptual models? We present some possible directions as
seeds for potential solutions.

Regarding aggregation, there are a number of object classes—such as documents, applications, devices,
users, data, and physical spaces— that might be aggregated to help users cope with the scale of information
and interaction intrinsic to ubicomp. Shifting the nexus of interaction from keyboard, mouse, and display to
the world at large, though, suggests that we may need aggregations of a more conceptual nature than the
visual bounding box of windows, such as spaces, tasks, groups of people, and contextual situations. If such
abstract aggregations are feasible, then providing consistent feedback, visibility, and mappings across the

1 The modern WIMP desktop incorporates many mechanisms and design principles, but in the interests of space we
have decomposed only those behind the acronym itself.

UUI design space to support interaction with and awareness of them will be a considerable design
challenge.

Similarly, a consistent notion of objects, commands, and selectors for UUIs is not readily apparent. Objects
might be virtual or physical, and objects of both natures might be semantically or causally entwined, such
as manipulating a virtual object via a physical artifact, or including a reference to a physical object or space
in an aggregation of task-oriented virtual objects. Either way, the objects and commands available in a
given UUI will vary between spaces and situations, and may often be unobvious without adequate
affordances and feedback. While routine behavior may enable a user to understand which physical and
virtual objects are operable under which commands in a given situation, a unified framework must also
empower users unfamiliar with those spaces and situations.

A possible solution may be sitting just in front of our noses: the GUI. The continuing proliferation of GUIs
across all manner of form factors might serve as a universal platform for communicating feedback and
affordances through visual representations of objects and commands. While aural, tangible, and ambient
interfaces promise to enrich the ubicomp user experience, their deployment does not necessitate forsaking
the considerable design experience and user familiarity intrinsic to the modern GUI. Nonetheless, careful
design of coherent visual feedback and affordances across spaces, devices, and tasks will be necessary to
avert visual overload.

Even if a user knows which objects and commands are operable, the system needs a way of disambiguating
multimodal commands meant for one object but applicable to many [2]. For example, should the spoken
imperative, “Warmer,” apply to the room you are in or the teacup you are holding? There is little indication
that systems emerging over the next few years will incorporate enough intelligence and finesse to reliably
disambiguate command targets under general conditions. The traditional solution to the selection problem
is a manual selection mechanism, whereby the user selects a target, receives feedback that the correct target
is selected, and then executes the command thereon (noun-verb). The tool-based approach, where the
command is selected before the target, has also worked under the right circumstances (verb-noun). In either
case, the user’s responsibility for specifying the correct target is mitigated by feedback about which targets
are currently selected. A unified UUI framework might employ manual selection techniques by establishing
universal haptic, aural, and visual feedback on portable and embedded GUIs that indicate which physical
and virtual objects are currently selected.

OPEN QUESTIONS FOR A UNIFIED UBICOMP INTERACTION FRAMEWORK
We have presented some research directions for applying AOCS to the UUI design space. However, a host
of open research questions remain, as these approaches barely scratch the surface of the problem.

The first set of questions we present look at the utility of applying AOCS to UUIs. For example, there have
been many changes between GUI and UUI in terms of tasks, technology, and social needs. With respect to
tasks, the WIMP desktop was designed for office work, whereas many people expect ubicomp to
encompass all aspects of life from cradle to grave. With respect to technology, the WIMP desktop was
designed for keyboard, mouse, and display, all connected to a single computer, whereas ubicomp is likely
to make use of a rich range of physically distributed inputs and outputs. With respect to social needs, there
are many questions about the relationship between ubicomp and individual privacy and accessibility. It is
not clear if AOCS, designed for such different constraints, is really applicable here.

If AOCS is applicable, is it a useful style of interaction for ubicomp? Or are other interaction styles, such as
natural language and dialog-based, more appropriate? For example, AOCS deals more with explicit
interaction rather than implicit interaction, as envisioned by many context-aware systems. Could such a
style of interaction encompass both implicit and explicit interaction?

The most important question to ask here is, what kinds of problems would AOCS solve for ubicomp? What
kinds of applications would it enable, and for whom? Likewise, what kinds of applications would it make it
hard to build?

The second set of questions we pose look at the barriers to implementing AOCS for UUIs. Assuming that
AOCS are useful for UUIs, how do we design the framework to embody principles such as visibility, robust
conceptual models, good mappings, and feedback? Similarly, is a unifying metaphor like the desktop
metaphor required?

Furthermore, a unified interaction framework needs to support developers, not just users. Developers need
an open framework on top of which they can design, prototype, evaluate, and implement reliable
applications. A robust event model for distributed applications is needed [4], as are toolkits that incorporate
good design principles and make it easier to do “the right thing.”

Another question to ask is, what mistakes did the WIMP make, and can we avoid repeating those mistakes?
For example, the WIMP desktop does not preclude groupware; however, all of the implementations out
there make it quite difficult.

Lastly, given all of these requirements, constraints, and open questions, what are some simple first steps the
research community can take towards a unified UUI framework? Is there a niche that we can start in and
expand from, similar to how the WIMP desktop started in office environments? Is there a simple sharable
testbed with which we can experiment with various interaction styles and compare results?

In summary, we have suggested taking the idea of aggregations, objects, commands, and selectors from the
successful WIMP desktop, and looked at how these ideas might be applied to Ubicomp User Interfaces, and
what some of the issues are in making this happen.

References
1. Abowd, G.D. and E.D. Mynatt, Charting Past, Present, and Future Research in Ubiquitous Computing.

ACM Transactions on Computer-Human Interaction, Special Issue on HCI in the New Millennium
2000. 7(1): p. 29-58.

2. Dey, A.K., D. Salber, and G.D. Abowd, A Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction (HCI) Journal 2001.
16(2-3).

3. Engelbart, D.C. and W.K. English. A Research Centre for Augmenting Human Intellect. In
Proceedings of Fall Joint Computing Conference. Thompson Washington DC. pp. 395-410 1968.

4. Johanson, B., A. Fox, P. Hanrahan, and T. Winograd, The Event Heap: An Enabling Infrastructure for
Interactive Workspaces. 2000. http://graphics.stanford.edu/papers/eheap/index.html

5. Johnson, J., T.L. Roberts, W. Verplank, D.C. Smith, C.H. Irby, M. Beard, and K. Mackey, The Xerox
Star: A Retrospective, IEEE Computer, vol. 22(9): pp. 11-29, 1989.

6. Norman, D. and S.W. Draper, User Centered System Design. Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc., 1986.

7. Sutherland, I., Sketchpad - A Man-machine Graphical Communication System, Unpublished PhD
Dissertation, Massachusetts Institute of Technology, 1963.

